Pricing power exchange options with hawkes jump diffusion processes

نویسندگان

چکیده

In this article, we propose a jump diffusion framework to price the power exchange options. We model dynamics of assets using Hawkes with common factors describe correlated risk and clustering asset jumps. In proposed model, jumps, reflecting systematic idiosyncratic risk, are modeled by self-exciting process exponential decay. A pricing formula for valuation option is obtained following measure-change technique. Existing models in literature shown be special cases model. Finally, sensitivity analysis given illustrate effect on prices. observe that significantly effects

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pricing Asian Options for Jump Diffusion

We construct a sequence of functions that uniformly converge (on compact sets) to the price of an Asian option, which is written on a stock whose dynamics follow a jump diffusion. The convergence is exponentially fast. We show that each element in this sequence is the unique classical solution of a parabolic partial differential equation (not an integro-differential equation). As a result we ob...

متن کامل

Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options

In this paper, we provide Laplace transform-based analytical solutions to pricing problems of various occupation-time-related derivatives such as step options, corridor options, and quantile options under Kou’s double exponential jump diffusion model. These transforms can be inverted numerically via the Euler Laplace inversion algorithm, and the numerical results illustrate that our pricing met...

متن کامل

Approximating GARCH-Jump Models, Jump-Diffusion Processes, and Option Pricing

This paper considers the pricing of options when there are jumps in the pricing kernel and correlated jumps in asset prices and volatilities. We extend theory developed by Nelson (1990) and Duan (1997) by considering limiting models for our resulting approximating GARCH-Jump process. Limiting cases of our processes consist of models where both asset price and local volatility follow jump diffus...

متن کامل

Hedging of Options in Jump-Diffusion Markets with Correlated Assets

We consider the hedging problem in a jump-diffusion market with correlated assets. For this purpose, we employ the locally risk-minimizing approach and obtain the hedging portfolio as a solution of a multidimensional system of linear equations. ‎This system shows that in a continuous market, independence and correlation assumptions of assets lead to the same locally risk-minimizing portfolio. ‎...

متن کامل

A penalty method for American options with jump diffusion processes

The fair price for an American option where the underlying asset follows a jump diffusion process can be formulated as a partial integral differential linear complementarity problem. We develop an implicit discretization method for pricing such American options. The jump diffusion correlation integral term is computed using an iterative method coupled with an FFT while the American constraint i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Industrial and Management Optimization

سال: 2021

ISSN: ['1547-5816', '1553-166X']

DOI: https://doi.org/10.3934/jimo.2019103